1/3

The Volume V

As we might expect from out knowledge about how to specify a **point** P(3 equalities), a **contour** C(2 equalities and 1 inequality), and a **surface** S(1 equality and 2 inequalities), a **volume** V is defined by **3 inequalities**.

<u>Cartesian</u>

The inequalities:

$$c_{x1} \leq x \leq c_{x2}$$
 $c_{y1} \leq y \leq c_{y2}$ $c_{z1} \leq z \leq c_{z2}$

define a **rectangular volume**, whose sides are parallel to the x-y, y-z, and x-z planes.

The differential volume *dv* used for constructing this Cartesian volume is:

Cylindrical

The inequalities:

$$c_{\rho 1} \leq \rho \leq c_{\rho 2}$$
 $c_{\phi 1} \leq \phi \leq c_{\phi 2}$ $c_{z 1} \leq z \leq c_{z 2}$

defines a cylinder, or some subsection thereof (e.g. a tube!).

The differential volume dv is used for constructing this cylindrical volume is:

 $dv =
ho \ d
ho \ d\phi \ dz$

Spherical

The equations:

$$c_{r1} \leq r \leq c_{r2}$$
 $c_{\theta 1} \leq \theta \leq c_{\theta 2}$ $c_{\phi 1} \leq \phi \leq c_{\phi 2}$

defines a **sphere**, or some subsection thereof (e.g., an "**orange slice**" !).

The differential volume *dv* used for constructing this spherical volume is:

 $dv = r^2 \sin \theta \, dr \, d\theta \, d\phi$

* Note that the three inequalities become **the limits of integration** for a volume integral. For example, integrating over a spherical volume would result in an integral of the form:

$$\iiint_{V} g(\bar{r}) dv = \int_{c_{\phi 1}}^{c_{\phi 2}} \int_{c_{r 1}}^{c_{r 2}} g(\bar{r}) r^{2} \sin \theta \, dr \, d\theta \, d\phi$$

For this example, if the scalar field $g(\bar{r})$ is not expressed in terms of spherical coordinates, it must first be transformed before the integral can be explicitly evaluated.

