The Volume V

As we might expect from out knowledge about how to specify a point P (3 equalities), a contour C (2 equalities and 1 inequality), and a surface S (1 equality and 2 inequalities), a volume V is defined by 3 inequalities.

Cartesian

The inequalities:

$$
c_{x 1} \leq x \leq c_{x 2} \quad c_{y 1} \leq y \leq c_{y 2} \quad c_{z 1} \leq z \leq c_{z 2}
$$

define a rectangular volume, whose sides are parallel to the $x-y$, $y-z$, and $x-z$ planes.

The differential volume $d v$ used for constructing this Cartesian volume is:

$$
d v=d x d y d z
$$

Cylindrical

The inequalities:

$$
c_{\rho 1} \leq \rho \leq c_{\rho 2} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \quad c_{z 1} \leq \boldsymbol{z} \leq c_{z 2}
$$

defines a cylinder, or some subsection thereof (e.g. a tube!).

The differential volume $d v$ is used for constructing this cylindrical volume is:

$$
d v=\rho d \rho d \phi d z
$$

Spherical

The equations:

$$
c_{r 1} \leq r \leq c_{r 2} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2}
$$

defines a sphere, or some subsection thereof (e.g., an "orange slice" !).

The differential volume $d v$ used for constructing this spherical volume is:

$$
d v=r^{2} \sin \theta d r d \theta d \phi
$$

* Note that the three inequalities become the limits of integration for a volume integral. For example, integrating over a spherical volume would result in an integral of the form:

$$
\iiint_{V} g(\bar{r}) d v=\int_{c_{\phi 1}}^{c_{\phi 2}} \int_{c_{1}}^{c_{01}} \int_{c_{1}}^{c_{r 2}} g(\bar{r}) r^{2} \sin \theta d r d \theta d \phi
$$

For this example, if the scalar field $g(\bar{r})$ is not expressed in terms of spherical coordinates, it must first be transformed before the integral can be explicitly evaluated.

* Note also that we can construct complex volumes by combining the simple volumes discussed here.

$$
V=V_{1}+V_{2}+V_{3}+V_{4}
$$

